

5th International LED professional Symposium +Expo LpS 2015 | Sept 22-24, 2015 | Bregenz

Sensitivity of the optical performance of LED illumination systems to manufacturing tolerances

Dr. Christian Paßlick Auer Lighting GmbH Bad Gandersheim, Germany

Auer Lighting GmbH

- German based Member of ADLT Group (US)
- Lighting expertise with R&D
- Complete tool shop in house
- Pressing capabilities (direct, injection molding, precision molding)
- Production of borosilicate glass (Suprax[®] 8488)
- Coating with sputtering and PICVD techniques

2

Overview

Introduction

Glass production techniques & challenges

Optical development

□ Example 1: High-Bay free-form lens

Example 2: TIR collimator for general lighting

Summary

Introduction

- □ Remarkable market growth of high and super high power LED solutions
 → chip temperatures and luminous flux densities have increased
 - \rightarrow high demand for durable optics
- Increasing request for glass due to its superior properties (particularly its higher temperature stability) in the automotive and stage lighting industry + also benefits for general lighting applications (long-term stability)

Thermography image of a COB LED [Fraunhofer IWM]. PMMA light guide irreversibly damaged by moderate LED radiation.

Introduction

- ❑ Uncertainty among customers regarding the required surface accuracy of optics
 → to be on the safe side requirements are specified close to the technical limit
 → increase of the total cost of ownership without any benefit
- Discussion about typical manufacturing tolerances and their consequences on the optical performance
- Examples of two optical designs with direct implementation of manufacturing constraints and positioning tolerances

Glass production techniques

Available pressing techniques with respect to the specific application and requirements:

	Direct pressing	Precision molding	Injection molding
Characteristic	Cost efficient	Highest precision	Highest degree of geometrical freedom
Example products			
Method	Optics is pressed directly from the liquid phase	A glass preform (Gob) is heated to the softening point and then pressed	Liquid glass is pressed from a reservoir into the mold
Pros	 One process step only Cycle time is in the order of seconds → high output, low costs High quality surface and shape accuracy of about 50 µm 	 Lower processing temperatures Potentially highest precision Deviations below 1 µm for imaging optics No shear marks 	 No shear marks Undercuts possible Optics with high aspect ratio (length/width) possible
Cons	 Shear marks and/or flow-lines in the glass possible Glass shrinkage Mechanical post-processing (polishing) can be necessary 	 Long cycle times → low output, high costs High quality gobs required 	 Very precise molds required Expensive press equipment

Optical development

- Potential surface irregularities and their influences on the optical performance can already be simulated during the early optical design stage
- □ Closed loop with tool shop
- Development cycle of LED optics:

FD SYMPOSIUM

Lens surface are subdivided into different zones of optical importance:

- **Zones A** and **B**: optical surfaces \rightarrow require the highest precision
- Zone C: positioning elements for LED module → require only high accuracy in lateral direction → tolerance analysis of the LED position: maximum deviation should be ≤ 0.3 mm (in general no problem for the hot forming process)
- Zone D: non-optical surfaces → no special accuracy is needed as long as the geometrical dimensions required for the lens mounting are fulfilled

□ After the initial sample production the lens was measured for dimensions and optical performance:

- The maximum deviation occurs in the center, which is only responsible for the on-axis emission
- The important fraction (for the 60° emission) of the optical surface has typical deviations of 0.1 mm

Light distributions of the optical target model and the measured contour are compared to the measured sample lenses.

- □ Development target is consistent with the measured light distribution → important features of the distribution at \pm 60° are matching the requirements
- Remaining differences to the measured light distribution are primarily caused by a deviation between the real LED and the ray file used for the development

- □ The final product was produced in a direct glass pressing process
- □ No post processing was needed \rightarrow cost-efficient product
- Both, the groove for the electrical contact of the LED and markers for the LED module positioning fulfill the customer's requirements

Produced free-form lens family for LED high-bay applications.

□ All surfaces are subdivided into four zones of importance:

- **Zone A**: optical TIR surface \rightarrow impact on the light collimation and beam angle
- \Box Zone B: optical surfaces \rightarrow responsible for the light refraction
- $\Box \quad \text{Zone C: positioning functions} \rightarrow \text{geometrical tolerances should be as low as possible}$
- **Zone** D: non-optical surfaces

Contour control plot for a produced glass sample compared to the optical model.

Comparison of the simulated luminous intensity distributions for the optical model and measured sample.

- Part of the center beam is directed into higher angles around 35° <> steeper draft angle of the inlet lens tube / shrinkage
- Beam angle is still within the specified 40° (±10%) window and the luminous flux remains almost unchanged

Comparison of the measured and simulated luminous intensity distributions.

Measured samples in the retrofit module show a significantly higher maximum intensity, but loss in the optical efficiency / luminous flux on the wall

 \rightarrow identifying cause via optical simulations

Optical simulation with lens shift to height 2.

Simulations revealed a mounting height difference of 0.8 mm between the customer fixture and the initial simulation height

LUGER RESEARCH

Example 2: TIR collimator

- Maximum contour deviations are occurring at the exit lens in the order of 0.3 mm
 - \rightarrow almost no effect on the light distribution
- Most important TIR surface and entrance lens surface show typical deviations of 0.07 mm
- Measured beam angle shows a good agreement with the development target
- Comparison of measured and simulated light distributions reveals positioning inaccuracies between both optical setups

 \rightarrow correct positioning of the optics and LED(s) in the fixture is essential and in own responsibility of the customer.

TIR collimator from Suprax[®] 8488

Summary

A still common subject for discussion is the technical feasibility of very small features in illumination optics especially when made from glass

 \rightarrow Overview of possible pressing technique characteristics and their early integration into the optical development

Two lens examples have shown that the following points in particular can show a higher impact on the optical performance than typical lens contour deviations:

□ deviations between LED data provided by supplier and real LED distribution:

- ⊙ chip size and height are often specified with a 0.5 mm tolerance
- O color deviations over angle and deviations between real light distribution and ray file are observed on a regular basis
- □ poorly positioned components in a lighting fixture:
 - ⊙ compressibility of gaskets
 - ⊙ processing tolerances

Summary

- □ LED tolerances and the later fixture assembly play a major role for deviations from a desired optical performance
- Usually no tolerance analysis of the whole lighting system is performed
 - \rightarrow expensive, overly precise optical surfaces and delicate features are requested to be on the safe side
- □ The day-to-day business of Auer Lighting GmbH shows that customers are very satisfied with the usage of glass in a wide array of applications and market segments
- Driving motivation for using glass optics or for exchanging limiting polymer parts in lighting fixtures:
 - □ high optical and long-lasting performance
 - □ temperature stability (mechanically & optically)
 - □ no yellowing / UV stability

Thanks for your attention.

Meet us at our booth A21.

Hybrid-reflector from non-glare line "Jupiter"

LED light guides for color mixing and beam shaping

